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Abstract :  

 
Mathematical modeling of water movement and dispersion of pollutants in sewage, is a major environmental problem. 

Increasing the number of pollutants, concentration, appearance of new compounds with unknown side make this a 

major issue in the operation of sewer networks. This paper aims to pesente several aspects of the movement of water 

and pollutants in sewage. 
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INTRODUCTION 

 

Fluid motion can be described quantitatively by 

mathematical expressions, which are based on 

three fundamental physical laws: the law of 

conservation of mass, with the aid of we obtain 

the continuity equation, Newton's Second Law, 

which we obtain the equation of dynamic 

equilibrium, called the Navier-Stokes equation, 

and the law of energy balance equation. 

In most cases the fluid motion equations and 

general dispersion equation are solved together, 

forming a system and the specific mass of the 

fluid depends on the pollutant concentration. 

To characterize the phenomenon of 

contaminant transport modeling is necessary to 

know several parameters: the distribution of 

velocities, pressure and temperature of the 

water, which they depend on the shape, on the 

flow and on the force field acting of the water. 

Pollutants must be identify and need to know 

the laws after they propagate, they move, react 

and then taken defensive measures and decrease 

the negative effects. Fluids are characterized by 

four components of pollutant transport: 

accumulation, convection, diffusion and 

chemical, biochemical, biological 

transformations occurring in the evolution of 

the prismatic channel. 

 

MATERIALS AND METHODS 

 

Pollutant dispersion is the result of the 

simultaneous action of a molecular diffusion 

phenomenon (exchange of molecules between 

layers of fluid) - advection due to the existence 

of speeds field which occurred the pollution. 

Transport and dispersion of pollutants in 

channels and pipes are in permanent and non-

permanent movement. Permanent movement 

does not depend on time, only depend on the 

variable x. This movement is justified in rivers 

for low water periods, which have a relatively 

long course with high pollution.  

If we replace c (concentration variable), with L 

(equivalent pollution variable), it will state the 

transport and evolution equation of the 

pollutant: 
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with boundary conditions: 

 x = 0, L = L1; 

x = L, L = L2,  

where L - CBO, Dt - dispersion coefficient; 

kd-coefficient of oxygen deficiency, x - 

distance from the origin section to the  

calculation section of water; L1 and L2 are 

known values, defined by the boundary 

conditions. Non-permanent movement depends 

on the time and space (variables) of the water 

flow, velocity and concentration of pollutants. 

Q = Q (x, t) c = c (x, t),  

where Q = water flow and c = concentration of 

the pollutant. 

Concentration of pollutant transported by water 

currents in rivers and channels generally varies 

in time and space and does not affect water 
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movement. Transport of pollutants in the water 

with average speed, involves networking 

between pollutant concentration and spatial 

characteristics - time, thus:  
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c – concentration of the pollutant, 

Dt - dispersion coefficient, 

k – coefficient of proportionality, 

where the initial conditions are:  

t=0; c=c0 (x) and boundary conditions: 

 x=x1; c=c1(t);  x=l; c=c2(t). 

Numerical simulation of non-permanent 

movement of fluids is defined by the 

independent variables t and x, by taking steps 

Δx, Δt. Derivatives function (c) are presented in 

two computation schemes:    (3) 

 

1.explicit scheme:  
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2. implicit scheme:     (4) 
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The fluid equations which are characterize the 

transport and dispersion of pollutants are the 

Navier-Stokes equations and the continuity 

equation. For real fluids, the specific weight is 

constant and based on mass forces, Navier – 

Stokes equations have the following 

expressions:                   (5) 
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and the continuity equation:   
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where ρ - specific mass, υ – kinematic viscosity 

coefficient. 

Initial conditions are known and they are: p, vx, 

vy, vz, at time t = 0 in the whole range of liquids 

in motion. Boundary conditions consist in 

knowing the velocity vector (v) or the pressure 

(p). It should be noted that the specific mass of 

the fluid depends on the concentration of the 

pollutant. Fluid movement can take place under 

laminar or turbulent motion. Under turbulent 

conditions the fluid particle through a very 

irregular trajectory varying over time.  Current 

velocity at a same point is the random character 

limits.  

The physicist Reynolds, who demonstrated 

turbulent flow regime and proposed that the 

system of Navier-Stokes equations are adding 

additional terms. Thus the idea was to 

decompose each size of turbulent fluid motion 

into two components: a mediated temporal 

component (details ignores turbulent motion) 

and a pulsating component (turbulence 

movement is just details). Due to turbulence 

appear  the consistent efforts tensors, called the 

uniform friction tensors of the apparent effort. 
Reynolds equation can be written as: 
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  (7) 

Efforts resulting from the sum of the consistent 

efforts due the viscosity, whit efforts of 

apparent friction, explained on a normal plane 

to the axis ox: 
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Juxtaposition of equations (5) and (8), Navier-

Stokes equations for turbulent motion remain 

unchanged and consistent efforts include both 

terminally viscosity and velocity pulsations: 
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Near the solid walls the high weight have the 

tangential equations because of the viscosity, 

while inside the fluid the high percentage have 

the tangential friction apparent effort. In canals, 

water flow is characterized to be generally in 

non-permanent movement, it mean that the 

current velocity in any point of the space 

occupied by the fluid depends in time. 

For a sewerage network, the layers differ, but 

the modeling is obtained in the same manner as 

if the movement gradually varied for a 

homogeneous liquid. These unknowns are 

determined by solving the Saint-Venant 

equations represented by:  
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dynamics equation, where: 

Q - flow; z - free surface share, B - width, 

ω - section of flow, K - module of flow. 

These equations must be solved simultaneously 

with the dispersion equation for gradually 

varied fluid movement: 
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, where replacement is Q= c . 

To solved it used the method of finite 

differences and the theoretical calculations and 

show that the scheme is rapidly convergent 

calculation, meeting the requirements of 

consistency and stability. Consistency condition 

occurs when the finite difference equation 

obtained tends to limit the differential equation 

and calculation steps (Dt, Dx) which tend to 

zero. The condition of stability of numerical 

solution of the diffusion equation 
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condition data, believes that at a time t> 0, the 

numerical solution is stable.  You must know 

the turbulent dispersion coefficient, Dt and 

pollutant source term q (positive or negative), 

depending on the nature of the pollutant. The 

term who express the dispersion to convection 

of the uniform or gradually varied movement of 

fluid substitute the diffusion in the normal plan 

on the ox axis and the axis oy, oz. This shows 

that diffusion is three-dimensional and the 

motion is one-dimensional of fluid. Diffusion 

along the flow axis is negligible compared to 

convection and diffusion and will be analyzed 

only in the normal plane to the flow axis (ox). 

Dispersion coefficient, in one-dimensional 

motion, including the influence of geometry 

section and velocity distribution in current 

section can be determined either by field 

experimental method or by calculation methods 

proposed by some researchers. (eg calculation 

method Bens). Saint-Venant equations are 

typical for  SWMM program (Storm Water 

Management Model) - for transport mode that 

calculates pollutant loading from a sewerage 

network. Flows are known and the pollution 

load are  entering in points from the sewer 

system. 

 

RESULTS AND DISCUSSIONS 

 

To determine the evolution of pollutant can 

achieved mathematical program like SMS 

(Surface-water Modeling System-SMS) RMA4. 

Type are resolved convection processes – 

diffusion and can be used in analysis of the 

evolution of any conservative pollutants 

(suspension or dissolved in water). 

The software package is effective for managing 

the entire process of modeling surface water: 

from importing topographic and hydrodynamic 

data up to visualize and analyze solutions. 

RMA4 uses hydrodynamics resulting from 

RMA2 and calculates a solution of dispersion 

equation using the finite element method. 

Influence of convective turbulence field is 

reflected by using turbulent diffusion 

coefficients in the directions x and y. 

Turbulence effects are taken into account by 
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using turbulent viscosity, which is also a means 

of ensuring the numerical stability of the 

solution. Another software package is model-

USEPA SWMM (Storm Water Management 

Model). Fundamental basic algorithm is as 

follows: 

- at some point in time we know all values 

and quality hydraulic system; 

- pollutant insert a node after a period in 

which it is spread only variable element 

concentrations seeks changes in nodes 

and route; 

- is established at a time of increased 

pollutant concentrations at the point of 

measure. 

To identify the source of the pollutant is 

necessary to identify the coordinates of nodes 

and drainage network characteristics (flow, 

velocity, diameter, length, type section) and the 

amount of pollutants in different areas of 

injection. Following mathematical modeling to 

obtain hydraulic data and water quality in 

sewer. The results are determined by 

calculating the hydraulic flow network section 

using Manning's equation and qualitative 

results provide information on concentrations of 

pollutants along the network and the 

intersection (nodes). 

 

CONCLUSIONS 

 

Mathematical modeling of transport processes 

and dispersion of pollutants in water developed 

along with great progress made in the field of 

computers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To develop the mathematical model of water 

flow is RMA4 program. It uses the system of 

Navier-Stokes equations as Reynolds after x 

and y cartesian coordinates with the equation of 

continuity for incompressible fluids with free 

surface in turbulent motion. 

Modeling pollutants can present in SWMM 

calculation program, using Saint-Venant 

equations and the movement is gradually varied 

dimensional for the stratified currents in pipes 

and channels. 
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